

| KARAKURI KAIZEN |                                                   |             |  |     |          |        | f            | 領域                                            |         |     | 05.車両組立  | •                 | 製作年 :                    | 2024年 |  |
|-----------------|---------------------------------------------------|-------------|--|-----|----------|--------|--------------|-----------------------------------------------|---------|-----|----------|-------------------|--------------------------|-------|--|
| からくり改善技術DBシート   |                                                   |             |  |     |          |        |              | イン名                                           | F7ライン   |     |          | 工程名               | 204ST                    |       |  |
|                 |                                                   |             |  |     |          |        |              | 所属                                            | 第1車両額   | 製造部 | 阝第2組立    | 課 第4組立係           | <del>{</del>             |       |  |
| 作品名             | 振り                                                | 振り返れば箱がいる   |  |     |          |        |              | 氏名                                            | 井田 夢    | 大   |          |                   |                          |       |  |
| テーマ             | 06.払い出し(自<br>動化・補助)                               |             |  |     |          | 【改善の   | )概要】         | <b>」</b> からくり機構で重量物の人による空箱返しを簡易化し、作業者の負担を軽減する |         |     |          |                   |                          |       |  |
| 困り事             | 03.重筋作業 05.手上げ作業 【困り事の概要】 空箱返しの腕上げ作業が作業者の負担になっている |             |  |     |          |        |              |                                               |         |     |          |                   |                          |       |  |
| 効果              | 500÷9(部品収納数)×2箱×2直=222回/日持5上げ作業回数削減!              |             |  |     |          |        |              |                                               |         |     |          |                   |                          |       |  |
| 製作費用            | 費用合計                                              |             |  | ¥19 |          | 96,400 | 材料           | 材料費                                           |         |     | ¥110,000 | 工数(H)             |                          | 24    |  |
| 要素技術            |                                                   | 機能          |  | 動力源 |          | ì      | 運動方式・方式の変換   |                                               |         |     | 使用している機構 |                   |                          |       |  |
|                 | 1                                                 | 06.昇降       |  | 1   | 07.ウエイト  | 1      |              |                                               | 方向に力を伝達 |     | 03.滑車    | 05.歯車(ラック<br>ニオン) | ク&ビ 11.チェーン・ワイ<br>ヤー・ロープ |       |  |
|                 | 2                                                 | 2 14.切り出し供給 |  | 2   | 07.ウエイト  | 2      | 08.回転・<br>える | 円弧運動←                                         | ⇒直線運動に変 | 2   | 01.てこ    | 02.リンク            |                          |       |  |
|                 | 3                                                 | 3 02.チルト    |  | 3   | 02.人力(手) | 3 02.同 |              | .同一方向に力を伝達                                    |         | 3   | 01.てこ    |                   |                          |       |  |
|                 | 4                                                 | 4           |  | 4   |          | 4      |              |                                               |         | 4   |          |                   |                          |       |  |
|                 |                                                   |             |  |     |          |        |              |                                               |         |     |          |                   |                          |       |  |
|                 |                                                   |             |  |     |          |        |              |                                               |         |     |          |                   |                          |       |  |
|                 |                                                   |             |  |     |          |        |              |                                               |         |     |          |                   |                          |       |  |
| 36美益            | -                                                 |             |  |     |          |        |              |                                               |         | 1   | コーナハファ   | 1.                |                          |       |  |

#### 改善前

ドアガーニッシュ空箱段替え作業



## ◆困っていること

サイドピット内にて、ドアガーニッシュ空箱を排出させる際、空箱を肩まで持ち上げる作業があった。空箱の重量が4kg~5kgあり、この作業によりエルゴノミクス評価レベルが3となり作業者の負担となっている。

#### ◆改善の着眼点

手上げ動作を無くし、作業者の負担を減らす事が出来ないか?

# 改善後



レバーを引き、空箱を排出レーンへ 流し込む



テーブルが上昇し、実箱が テーブルに排出される



テーブルが下降し、実箱が 定位置に供給される

テーブルが上昇すると支点Bに付けられたロットに干渉し、

支点Aが回転。前端が下がる事で容器が流れだす。

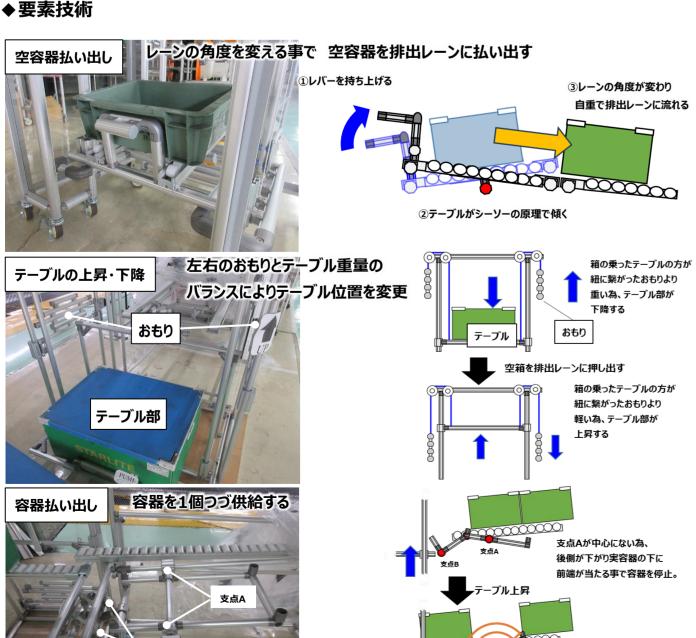
支点Bが回転。つながったロッドにより

#### ◆改善内容

返却レーンの位置を下段に変更。

実箱をからくりを使い、上段から下段に供給する事で返却時の手上げ動作を無くし、作業者の負担を削減。

### 改善前


エルゴノミクス評価 評価レベル3



エルゴノミクス評価 評価レベル1

改善後

### ▲更麦技術



### ◆要素技術解説

空容器払い出し

【機能:昇降】 【動力源:人力(手)】

【運動特性・特性変換:上向き⇔下向き方向に力を伝達】【使用している機構:シーソー】 ①レバーを上げると、テーブルがシーソーの原理で傾き、レール角度が変わる事で レールに乗っ た空箱が自重で排出レーンに流れる。

### テーブル部 上昇・下降

【機能:昇降】 【動力源:ウエイト】 【運動特性・特性変換:反対方向に力を伝達】

【使用している機構:滑車/ラック&ピニオン】

①空箱を払い出すと、両サイドにぶら下がったおもりに引かれ、

テーブルが上昇。

②上端に来ると、ストッパーが外れ、容器が供給レーンから

1個流れ出て テーブルの上に排出される。

③テーブル+箱の重量により、おもりが負け テーブルが下降する。 (下降速度はラック&ピニオンで抵抗を設ける事でゆっくり下降)

### 容器払い出し

【機能:切り出し供給】 【動力源:重力】

【運動特性・特性変換:直線運動⇔回転・円弧運動に変える】

【使用している機構:テコ/リンク】

①支点Aが中心にない為、重力により 前端が上がり 容器の底に干渉する事で 容器の払い出しを停止させている。

②テーブルが上昇すると支点Bに付いたロットに当り、支点B部が回転。 支点Bに付いたリンクにより、ストッパーが下に引かれ、支点Aを中心に 前端が下り、後端が上がる。

③容器の干渉が無くなる事で 1番目の容器が重力で流れ 供給される。 (後端が上がり、2番目容器の底に干渉する事で 続けて供給される事を 防止する)